Support Vector Machines

Binary Classification

A Separating Hyperplane

Maximum Margin Hyperplane

the convex hulls of the two classes

SVM Notation

Hard Margin SVM Primal

- Maximize 2/|w|such that $w^t x_i + b \ge +1$ $w^t x_i + b \le -1$
 - $2/|\mathbf{w}|$ $\mathbf{w}^{t}\mathbf{x}_{i} + b \ge +1 \qquad \text{if } y_{i} = +1$ $\mathbf{w}^{t}\mathbf{x}_{i} + b \le -1 \qquad \text{if } y_{i} = -1$
- Difficult to optimize directly
- Convex Quadratic Program (QP) reformulation
- Minimize $\frac{1}{2}\mathbf{w}^t\mathbf{w}$ such that $y_i(\mathbf{w}^t\mathbf{x}_i + b) \ge 1$
- Convex QPs can be easy to optimize

Linearly Inseparable Data

- Minimize $\frac{1}{2}\mathbf{w}^t\mathbf{w} + C \#$ (Misclassified points) such that $y_i(\mathbf{w}^t\mathbf{x}_i + b) \ge 1$ (for "good" points)
- The optimization problem is NP Hard in general
 Disastrous errors are penalized the same as near misses

Inseparable Data – Hinge Loss

The C-SVM Primal Formulation

 Minimize such that

$$y_{i}(\mathbf{w}^{t}\mathbf{w} + C \Sigma_{i} \xi_{i})$$
$$y_{i}(\mathbf{w}^{t}\mathbf{x}_{i} + b) \geq 1 - \xi_{i}$$
$$\xi_{i} \geq 0$$

- The optimization is a convex QP
- The globally optimal solution will be obtained
- Number of variables = D + N + 1
- Number of constraints = 2*N*
- Solvers can train on 800K points in 47K (sparse) dimensions in less than 2 minutes on a standard PC

Fan *et al.,* "<u>LIBLINEAR</u>" JMLR 08 Bordes *et al.,* "LaRank" ICML 07

The C-SVM Dual Formulation

- Maximize $\mathbf{1}^t \boldsymbol{\alpha} \frac{1}{2} \boldsymbol{\alpha}^t \mathbf{Y} \mathbf{K} \mathbf{Y} \boldsymbol{\alpha}$ such that $\mathbf{1}^t \mathbf{Y} \boldsymbol{\alpha} = \mathbf{0}$ $\mathbf{0} \le \boldsymbol{\alpha} \le \mathbf{C}$
- **K** is a kernel matrix such that $\mathbf{K}_{ij} = K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^t \mathbf{x}_j$
- α are the dual variables (Lagrange multipliers)
- Knowing α gives us w and b
- The dual is also a convex QP
 - Number of variables = *N*
 - Number of constraints = 2N + 1

Fan *et al.*, "<u>LIBSVM</u>" JMLR 05 Joachims, "<u>SVMLight</u>"

Duality

- Primal $P = Min_{\mathbf{x}}$ $f_0(\mathbf{x})$ s.t. $f_i(\mathbf{x}) \le 0$ $1 \le i \le N$ $h_i(\mathbf{x}) = 0$ $1 \le i \le M$
- Lagrangian $L(\mathbf{x}, \lambda, \mu) = f_0(\mathbf{x}) + \sum_i \lambda_i f_i(\mathbf{x}) + \sum_i \mu_i h_i(\mathbf{x})$

• Dual D = Max_{λ,μ} Min_x $L(x,\lambda,\mu)$ s.t. $\lambda \ge 0$

Duality

- The Lagrange dual is always concave (even if the primal is not convex) and might be an easier problem to optimize
- Weak duality : $P \ge D$
 - Always holds
- Strong duality : *P* = *D*
 - Does not always hold
 - Usually holds for convex problems
 - Holds for the SVM QP

根据空义, 有
min x L(x,
$$\lambda$$
, M) $\leq L(x^*, \lambda, M)$ (5)
(其中 π^* 为 Primal 前) 趣 和最短時)
因为 $\lambda_i z_0$, $M_j z_0$, $f_i(x^*) \leq 0$, $h_j(\pi^*) = 0$,
我们有
 $\lambda_i f_i(x^*) \leq 0$, $M_j h_j(x^*) = 0$
因此, $L(x^*, \lambda, M) = f_0(x^*) + \sum \lambda_i f_i(x^*)$
 $+ \sum M_j h_j(x^*)$
 $\leq f_0(x^*)$ (6)
物(5) 和(6), 有
 $Min_x L(x, \lambda, M) \leq f_0(x^*)$
 $(x \neq \forall \lambda, \forall M + 5) \vec{X} \geq)$
因此
Dual = $\max_{\lambda, M} \min_{x} L(x, \lambda, M)$
 $\leq f_0(x^*) = Primal$

Karush-Kuhn-Tucker (KKT) Conditions

- If strong duality holds, then for $x^*,\,\lambda^*$ and μ^* to be optimal the following KKT conditions must necessarily hold
- Primal feasibility : $f_i(\mathbf{x}^*) \le 0 \& h_i(\mathbf{x}^*) = 0$ for $1 \le i$
- Dual feasibility : $\lambda^* \ge 0$
- Stationarity : $\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*, \mu^*) = 0$
- Complimentary slackness : $\lambda_i * f_i(\mathbf{x}^*) = 0$
- If x^+ , λ^+ and μ^+ satisfy the KKT conditions for a convex problem then they are optimal

SVM jabersti min
$$\frac{1}{2}w^{T}w + c \underbrace{\xi}_{i=1}$$

 $s.t. \quad y:(w^{T}\pi; +b) \ge 1-\varepsilon i$
 $\varepsilon:z=0$
 $(i=1,2,...,N)$
 $fe(i) \notin \mathfrak{K} \ min \quad \frac{1}{2}w^{T}w + c \underbrace{\xi}_{i=1}$
 $w, b. \varepsilon:$
 $min \quad \frac{1}{2}w^{T}w + c \underbrace{\xi}_{i=1}$
 $w, b. \varepsilon:$
 $s.t. \quad 1-\varepsilon i - y:(w^{T}\pi; +b) \le 0$
 $(i=1,2,...,N)$
 $fe(i) \notin \mathfrak{K} \ min \quad \mathfrak{K} \ \mathfrak{K$

假设 w^{*}, b^{*}, 2: 是问题(2) 肠最低的,则根据
KKT条件,有

$$1 - 2i - yi (w^T xi + b^*) \leq 0$$

 $-2^* \leq 0$
 $d_i^* \geq 0$
 $d_i^* = 0$
 $d_$

(4) 中只有一组变导之:,通过KKT条件中的不等式

$$\int_{\alpha} \frac{\partial z}{\partial z} \frac{\partial z} \frac{\partial z}{\partial z} \frac{\partial z}{\partial z} \frac{\partial z}{\partial$$

SVM – Duality

- Primal $P = Min_{w,\xi,b}$ s.t. $\frac{1}{2}w^tw + C^t\xi}{Y(X^tw + b1) \ge 1 - \xi}$ $\xi \ge 0$
- Lagrangian $L(\alpha, \beta, \mathbf{w}, \xi, b) = \frac{1}{2} \mathbf{w}^t \mathbf{w} + \mathbf{C}^t \xi \beta^t \xi \alpha^t [\mathbf{Y}(\mathbf{X}^t \mathbf{w} + b\mathbf{1}) \mathbf{1} + \xi]$
- Dual D = Max_{α} 1^t α ½ α ^tYKY α s. t. 1^tY α = 0 0 $\leq \alpha \leq C$

SVM – KKT Conditions

- Lagrangian $L(\alpha, \beta, \mathbf{w}, \xi, b) = \frac{1}{2} \mathbf{w}^t \mathbf{w} + \mathbf{C}^t \xi \beta^t \xi \alpha^t [\mathbf{Y}(\mathbf{X}^t \mathbf{w} + b\mathbf{1}) \mathbf{1} + \xi]$
- Stationarity conditions
 - $\nabla_{\mathbf{w}} L=0 \Longrightarrow \mathbf{w}^* = \mathbf{X}\mathbf{Y}\alpha^*$ (Representer Theorem)
 - $\nabla_{\xi} L = 0 \Longrightarrow C = \alpha^* + \beta^*$
 - $\nabla_b L = 0 \Longrightarrow \alpha^{*t} Y \mathbf{1} = \mathbf{0}$

Complimentary Slackness conditions

• $\alpha_i^* [y_i(\mathbf{x}_i^t \mathbf{w}^* + b^*) - \mathbf{1} + \xi_i^*] = 0$

•
$$\beta_i^* \xi_i^* = 0$$

Support Vector Classification

• Training data $(\mathbf{x}_i, y_i), i = 1, \dots, I, \mathbf{x}_i \in R^n, y_i = \pm 1$

$$\min_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^{\prime} \max(0, 1 - y_i \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_i))$$

- C: regularization parameter
- High dimensional (maybe infinite) feature space

$$\phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \ldots]^T.$$

- We omit the bias term b
- w: may have infinite variables

Support Vector Classification (Cont'd)

• The dual problem (finite # variables)

$$\min_{\boldsymbol{\alpha}} f(\boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{\alpha}^T \boldsymbol{Q} \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha}$$

subject to
$$0 \leq \alpha_i \leq C, i = 1, \dots, I,$$

where $Q_{ij} = y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ and $\mathbf{e} = [1, \dots, 1]^T$ • At optimum

$$\mathbf{w} = \sum_{i=1}^{l} \alpha_i y_i \phi(\mathbf{x}_i)$$

• Kernel:
$$K(\mathbf{x}_i, \mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Large Dense Quadratic Programming

• $Q_{ij} \neq 0$, Q: an I by I fully dense matrix

$$\min_{\boldsymbol{\alpha}} f(\boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{\alpha}^{T} \boldsymbol{Q} \boldsymbol{\alpha} - \mathbf{e}^{T} \boldsymbol{\alpha}$$

subject to
$$0 \leq \alpha_{i} \leq C, i = 1, \dots, I$$

- 50,000 training points: 50,000 variables: (50,000 $^2 \times 8/2$) bytes = 10GB RAM to store Q
- Traditional methods: Newton, Quasi Newton cannot be directly applied
- Now most use decomposition methods [Osuna et al., 1997, Joachims, 1998, Platt, 1998]

Decomposition Methods

- We consider a one-variable version
 Similar to coordinate descent methods
- Select the *i*th component for update:

$$\begin{array}{ll} \min_{\boldsymbol{d}} & \frac{1}{2}(\boldsymbol{\alpha} + d\mathbf{e}_i)^T \mathcal{Q}(\boldsymbol{\alpha} + d\mathbf{e}_i) - \mathbf{e}^T(\boldsymbol{\alpha} + d\mathbf{e}_i) \\ \text{subject to} & 0 \leq \alpha_i + d \leq C \end{array}$$

where

$$\mathbf{e}_i \equiv \begin{bmatrix} \underline{0 \dots 0} \\ i-1 \end{bmatrix}^T \mathbf{0 \dots 0} \end{bmatrix}^T$$

• α : current solution; the *i*th component is changed (

Avoid Memory Problems

• The new objective function

$$\frac{1}{2}Q_{ii}d^2 + (Q\alpha - \mathbf{e})_id + \text{ constant}$$

• To get $(Q\alpha - \mathbf{e})_i$, only Q's *i*th row is needed

$$(Q \alpha - \mathbf{e})_i = \sum_{j=1}^l Q_{ij} \alpha_j - 1$$

 Calculated when needed. Trade time for space
 Used by popular software (e.g., *SVM^{light}*, LIBSVM) They update 10 and 2 variables at a time

Decomposition Methods: Algorithm

• Optimal *d*:

$$-\frac{(Q\alpha-\mathbf{e})_i}{Q_{ii}}=-\frac{\sum_{j=1}^l Q_{ij}\alpha_j-1}{Q_{ii}}$$

- Consider lower/upper bounds: [0, C]
- Algorithm:

While lpha is not optimal

1. Select the *i*th element for update

2.
$$\alpha_i \leftarrow \min\left(\max\left(\alpha_i - \frac{\sum_{j=1}^{l} Q_{ij}\alpha_j - 1}{Q_{ii}}, 0\right), C\right)$$

Select an Element for Update

Many ways

- Sequential (easiest)
- Permuting 1, . . . , / every / steps
- Random
- Existing software check gradient information

$$abla_1 f(oldsymbol{lpha}), \dots,
abla_l f(oldsymbol{lpha})$$

But is $\nabla f(\alpha)$ available?

Select an Element for Update (Cont'd)

• We can easily maintain gradient

$$abla f(oldsymbol{lpha}) = Qoldsymbol{lpha} - \mathbf{e}$$

 $abla_s f(oldsymbol{lpha}) = (Qoldsymbol{lpha})_s - 1 = \sum_{j=1}^{l} Q_{sj} \alpha_j - 1$

• Initial $oldsymbol{lpha} = oldsymbol{0}$

$$abla f(\mathbf{0}) = -\mathbf{e}$$

• α_i updated to $\bar{\alpha}_i$

$$abla_{s}f(\boldsymbol{lpha}) \leftarrow
abla_{s}f(\boldsymbol{lpha}) + \frac{Q_{si}(\bar{\alpha}_{i} - \alpha_{i})}{Q_{si}(\bar{\alpha}_{i} - \alpha_{i})}, \quad \forall s$$

• O(I) if $Q_{si} \forall s$ (*i*th column) are available

Select an Element for Update (Cont'd)

• No matter maintaining $\nabla f(\alpha)$ or not *Q*'s *i*th row (column) always needed

$$\bar{\alpha}_{i} \leftarrow \min\left(\max\left(\alpha_{i} - \frac{\sum_{j=1}^{l} Q_{ij} \alpha_{j} - 1}{Q_{ii}}, 0\right), C\right)$$

Q is symmetric

Using ∇f(α) to select i: faster convergence
 i.e., fewer iterations

Decomposition Methods: Using Gradient

The new procedure

•
$$\boldsymbol{\alpha} = \boldsymbol{0}, \nabla f(\boldsymbol{\alpha}) = -\mathbf{e}$$

• While lpha is not optimal

1. Select the *i*th element using $\nabla f(\alpha)$ 2. $\bar{\alpha}_i \leftarrow \min\left(\max\left(\alpha_i - \frac{\sum_{j=1}^{l} Q_{ij}\alpha_j - 1}{Q_{ii}}, 0\right), C\right)$ 3. $\nabla_s f(\alpha) \leftarrow \nabla_s f(\alpha) + Q_{si}(\bar{\alpha}_i - \alpha_i), \forall s$

Cost per iteration

- O(ln), I: # instances, n: # features
- Assume each $Q_{ij} = y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$ takes O(n)

• Primal without the bias term b

$$\min_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{l} \max\left(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i\right)$$

$$\min_{\alpha} f(\alpha) = \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$

subject to
$$0 \le \alpha_{i} \le C, \forall i$$

•
$$Q_{ij} = y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

Revisit Decomposition Methods

- While lpha is not optimal
 - 1. Select the *i*th element for update
 - 2. $\alpha_i \leftarrow \min\left(\max\left(\alpha_i \frac{\sum_{j=1}^{l} Q_{ij}\alpha_j 1}{Q_{ii}}, 0\right), C\right)$
- O(In) per iteration; n: # features, I: # data
 For linear SVM, define

$$\mathbf{w} \equiv \sum_{j=1}^{l} y_j \alpha_j \mathbf{x}_j \in R^n$$

• O(n) per iteration

$$\sum_{j=1}^{\prime} Q_{ij}\alpha_j - 1 = \sum_{j=1}^{\prime} y_i y_j \mathbf{x}_i^T \mathbf{x}_j \alpha_j - 1 = y_i \mathbf{w}^T \mathbf{x}_i - 1_{\mathbf{w}}$$

• All we need is to maintain w. If

$$\bar{\alpha}_i \leftarrow \alpha_i$$

then O(n) for

$$\mathbf{w} \leftarrow \mathbf{w} + (\bar{\alpha}_i - \alpha_i) y_i \mathbf{x}_i$$

Initial w

$$oldsymbol{lpha} = oldsymbol{0} \quad \Rightarrow \quad oldsymbol{w} = oldsymbol{0}$$

- Give up maintaining $\nabla f(\alpha)$
- Select *i* for update
 Sequential, random, or
 Permuting 1, ..., *l* every *l* steps

Algorithms for Linear and Nonlinear SVM

Linear:

• While lpha is not optimal

1. Select the *i*th element for update 2. $\bar{\alpha}_i \leftarrow \min\left(\max\left(\alpha_i - \frac{y_i \mathbf{w}^T \mathbf{x}_i - 1}{Q_{ii}}, 0\right), C\right)$ 3. $\mathbf{w} \leftarrow \mathbf{w} + (\bar{\alpha}_i - \alpha_i) y_i \mathbf{x}_i$

Nonlinear:

- While lpha is not optimal
 - 1. Select the *i*th element using $\nabla f(\alpha)$
 - 2. $\bar{\alpha}_i \leftarrow \min\left(\max\left(\alpha_i \frac{\sum_{j=1}^{\prime} Q_{ij}\alpha_j 1}{Q_{ii}}, 0\right), C\right)$ 3. $\nabla_s f(\alpha) \leftarrow \nabla_s f(\alpha) + Q_{si}(\bar{\alpha}_i - \alpha_i), \forall s$

Analysis

- Decomposition method for nonlinear (also linear):
 O(In) per iteration (used in LIBSVM)
- New way for linear:

O(n) per iteration (used in LIBLINEAR)

- Faster if # iterations not / times more
- Experiments

Problem	<i>I</i> :	<i>n</i> : # features
news20	19,996	1,355,191
yahoo-japan	176,203	832,026
rcv1	677,399	47,236
yahoo-korea	460,554	3,052,939

Testing Accuracy versus Training Time

yahoo-korea