Support Vector Machines

A Separating Hyperplane

Maximum Margin Hyperplane

Geometric Intuition: Choose the perpendicular bisector of the shortest line segment joining the convex hulls of the two classes

SVM Notation

Hard Margin SVM Primal

- Maximize $2 /|\mathbf{w}|$ such that

$$
\begin{array}{ll}
\mathbf{w}^{t} \mathbf{x}_{i}+b \geq+1 & \text { if } y_{i}=+1 \\
\mathbf{w}^{t} \mathbf{x}_{i}+b \leq-1 & \text { if } y_{i}=-1
\end{array}
$$

- Difficult to optimize directly
- Convex Quadratic Program (QP) reformulation
- Minimize $\quad 1 / 2 \mathbf{w}^{t} \mathbf{w}$
such that $\quad y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 1$
- Convex QPs can be easy to optimize

Linearly Inseparable Data

- Minimize such that
$1 / 2 \mathbf{w}^{t} \mathbf{w}+C$ (Misclassified points)
$y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 1$ (for "good" points)
- The optimization problem is NP Hard in general
- Disastrous errors are penalized the same as near misses

Inseparable Data - Hinge Loss

The C-SVM Primal Formulation

- Minimize
such that

$$
\begin{aligned}
& 1 / 2 \mathbf{w}^{t} \mathbf{w}+C \Sigma_{i} \xi_{i} \\
& y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\
& \xi_{i} \geq 0
\end{aligned}
$$

- The optimization is a convex QP
- The globally optimal solution will be obtained
- Number of variables $=D+N+1$
- Number of constraints $=2 \mathrm{~N}$
- Solvers can train on 800K points in 47K (sparse) dimensions in less than 2 minutes on a standard PC

```
Fan et al., "LIBLINEAR" JMLR 08
Bordes et al., "LaRank" ICML 07
```


The C-SVM Dual Formulation

- Maximize such that
$1^{t} \alpha-1 / 2 \alpha^{t} Y K Y \alpha$
$1^{t} Y \alpha=0$
$\mathbf{O} \leq \boldsymbol{\alpha} \leq \mathbf{C}$
- K is a kernel matrix such that $\mathrm{K}_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}{ }^{t} \mathbf{x}_{j}$
- α are the dual variables (Lagrange multipliers)
- Knowing α gives us w and b
- The dual is also a convex QP
- Number of variables = N
- Number of constraints $=2 N+1$

Fan et al., "
Joachims, "

Duality

- Primal $P=\operatorname{Min}_{\mathbf{x}} \quad f_{0}(\mathbf{x})$

$$
\begin{array}{lll}
\text { s. t. } & f_{i}(\mathbf{x}) \leq 0 & 1 \leq i \leq N \\
& h_{i}(\mathbf{x})=0 & 1 \leq i \leq M
\end{array}
$$

- Lagrangian $L(\mathbf{x}, \lambda, \mu)=f_{0}(\mathbf{x})+\Sigma_{i} \lambda_{j} f_{i}(\mathbf{x})+\Sigma_{i} \mu_{i} h_{i}(\mathbf{x})$
- Dual $D=\operatorname{Max}_{\lambda, \mu} \quad \operatorname{Min}_{x} L(x, \lambda, \mu)$

$$
\text { s.t. } \quad \lambda \geq 0
$$

Duality

- The Lagrange dual is always concave (even if the primal is not convex) and might be an easier problem to optimize
- Weak duality : $P \geq D$
- Always holds
- Strong duality : $P=D$
- Does not always hold
- Usually holds for convex problems
- Holds for the SVM QP

根据定义，有

$$
\min _{x} L(x, \lambda, \mu) \leqslant L\left(x^{*}, \lambda, \mu, \quad(5)\right.
$$

（其中 x^{*} 为 Primal问题的最优解）
因为 $\lambda_{i} \geqslant 0, \mu_{j} \geqslant 0, f_{i}\left(x^{*}\right) \leq 0, h_{j}\left(x^{*}\right)=0$ ，
我仏有

$$
\lambda_{i} f_{i}\left(x^{*}\right) \leqslant 0, \mu_{j} h_{j}\left(x^{*}\right)=0
$$

因此，

$$
\begin{align*}
& L\left(x^{*}, \lambda, \mu\right)=f_{0}\left(x^{*}\right)+\sum_{2} \lambda_{i} f_{i}\left(x^{*}\right) \\
&+\sum_{j} \mu_{j} h_{j}\left(x^{*}\right) \\
& \leq f_{0}\left(x^{*}\right) \tag{6}
\end{align*}
$$

$$
\text { 由 (} 5 \text {) 和 (6) , 有 }
$$

$$
\begin{gathered}
\min _{x} L(x, \lambda, \mu) \leq f_{0}\left(x^{*}\right) \\
(\text { 对 } \forall \lambda, \forall \mu \text { 均成立) }
\end{gathered}
$$

因此

$$
\begin{aligned}
D_{\text {ual }} & =\max _{\lambda, \mu} \min _{x} L(x, \lambda, \mu) \\
& \leq f_{0}\left(x^{*}\right)=\text { Primal }
\end{aligned}
$$

Karush-Kuhn-Tucker (KKT) Conditions

- If strong duality holds, then for x^{*}, λ^{*} and μ^{*} to be optimal the following KKT conditions must necessarily hold
- Primal feasibility : $f_{i}\left(\mathbf{x}^{*}\right) \leq 0 \& h_{i}\left(\mathbf{x}^{*}\right)=0$ for $1 \leq i$
- Dual feasibility : $\lambda^{*} \geq 0$
- Stationarity : $\nabla_{\mathrm{x}} L\left(\mathrm{x}^{*}, \lambda^{*}, \mu^{*}\right)=0$
- Complimentary slackness : $\lambda_{i}^{*} f_{i}\left(\mathbf{x}^{*}\right)=0$
- If $\mathbf{x}^{+}, \lambda^{+}$and μ^{+}satisfy the KKT conditions for a convex problem then they are optimal

SVM问题形式 $\min _{w, b, \varepsilon_{i}} \frac{1}{2} w^{\top} w+c \sum_{i=1}^{N} \varepsilon_{i}$

$$
\begin{array}{ll}
\text { s.t. } & y_{i}\left(w^{\top} x_{i}+b\right) \geqslant 1-\varepsilon_{i} \tag{1}\\
\varepsilon_{i} \geqslant 0
\end{array}
$$

把（1）变成原始问题的标准形式：

$$
\begin{align*}
\min _{w, b, \varepsilon_{i}} & \frac{1}{2} w^{\top} w+C \sum_{i=1}^{N} \varepsilon_{i} \\
\text { s.t. } & 1-\varepsilon_{i}-y_{i}\left(w^{\top} x_{i}+b\right) \leq 0 \\
& -\varepsilon_{i} \leq 0 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { 根据(2)得到的拉格朗日函数是: } \\
& L\left(w, b, \varepsilon_{i}, \alpha_{i} \cdot \beta_{i}\right) \\
& =\frac{1}{2} w^{\top} w+c \sum_{i=1}^{N} \varepsilon_{i} \\
& \quad+\sum_{i=1}^{N} \alpha_{i}\left(1-\varepsilon_{i}-y_{i}\left(w^{\top} x_{i}+b\right)\right] \\
& \quad+\sum_{i=1}^{N} \beta_{i}\left(-\varepsilon_{i}\right) \\
& = \\
& \frac{1}{2} w^{\top} w+\sum_{i=1}^{N}\left(c-\alpha_{i}-\beta_{i}\right) \varepsilon_{i}+\sum_{i=1}^{N} \alpha_{i} \\
& \quad+\sum_{i=1}^{N}\left(-\alpha_{i} y_{i}\right)\left(w^{\top} x_{i}+b\right)
\end{aligned}
$$

假设 $w^{*}, b^{*}, ~ \varepsilon_{i}^{*}$ 是问题（2）的最优解则根据 KKT条件，有

$$
\begin{aligned}
& 1-\varepsilon_{i}^{*}-y_{i}\left(w^{* T} x_{i}+b^{*}\right) \leqslant 0 \\
& -\varepsilon^{*} \leqslant 0 \\
& \alpha_{i}^{*} \geq 0 \\
& \beta_{i}^{*} \geqslant 0 \\
& \text { (} \alpha_{i}^{*}, ~ \beta_{i}^{*} \text { 是对偶问题的 } \\
& \text { 最优解) } \\
& \frac{\partial L}{\partial w}=w-\sum_{i=1}^{W} \alpha_{i} y_{i} x_{i}=0 \\
& \frac{\partial L}{\partial b}=-\sum_{i=1}^{N} y_{i} \alpha_{i}=0 \\
& \frac{\partial L}{\partial \varepsilon_{i}}=C-\alpha_{i}-\beta_{i}=0 \quad(i=1,2, \cdots, N) \\
& \begin{array}{l}
\alpha_{i}\left[1-\varepsilon_{i}-y_{i}\left(w^{\top} x_{i}+b\right)\right]=0 \\
B_{i}\left(-\varepsilon_{i}\right)=0
\end{array} \\
& \beta i\left(-\varepsilon_{i}\right)=0
\end{aligned}
$$

$$
\begin{align*}
& \text { (3) 可化简为 } \\
& \frac{1}{2}\left(\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}^{\top}\right)\left(\sum_{j=1}^{N} \alpha_{j} y_{j} x_{j}\right)+0+\sum_{i=1}^{N} \alpha_{i} \\
& -\left(\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}^{\top}\right)\left(\sum_{j=1}^{N} \alpha_{j} y_{j} x_{j}\right)+b \times 0 \tag{4}\\
& =\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2}\left(\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}^{\top}\right)\left(\sum_{j=1}^{N} \alpha_{j} y_{j} x_{j}\right)
\end{align*}
$$

（4）中只有一组变量 α_{i} ，通过 KKT条件中的不等式有

$$
\left\{\begin{array}{l}
\alpha_{i} \geqslant 0 \\
c-2 i=\beta_{i} \geqslant 0
\end{array}\right.
$$

因此，有

$$
0 \leq \alpha_{i} \leq C \quad(i=1,2, \cdots, N)
$$

最后得到对偶问题的形或

$$
\max _{\alpha_{i}} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i}^{\top} x_{j}
$$

$$
\text { s.t. } \quad 0 \leq \alpha_{i} \leq C \quad(i=1,2, \cdots, N)
$$

$$
\sum_{i=1}^{N} y_{i} \alpha_{i}=0
$$

SVM - Duality

- Primal $P=\operatorname{Min}_{\mathbf{w}, \xi, b} \quad 1 / 2 \mathbf{w}^{t} \mathbf{w}+\mathbf{C}^{t} \xi$

$$
\begin{array}{ll}
\text { s. t. } & \mathbf{Y}\left(\mathbf{X}^{t} \mathbf{w}+b \mathbf{1}\right) \geq \mathbf{1}-\xi \\
& \xi \geq \mathbf{0}
\end{array}
$$

- Lagrangian $L(\alpha, \beta, \mathbf{w}, \xi, b)=1 / 2 \mathbf{w}^{t} \mathbf{w}+\mathbf{C}^{t} \xi-\boldsymbol{\beta}^{t} \xi$ $-\alpha^{t}\left[\mathbf{Y}\left(\mathbf{X}^{t} \mathbf{w}+b \mathbf{1}\right)-1+\xi\right]$
- Dual $D=\operatorname{Max}_{\alpha} \quad 1^{t} \alpha-1 / 2 \alpha^{t} \mathbf{Y} K Y \alpha$
s.t.
$1^{\text {th }} \mathrm{Y} \alpha=0$
$0 \leq \alpha \leq C$

SVM - KKT Conditions

- Lagrangian $L(\alpha, \beta, \mathbf{w}, \xi, b)=1 / 2 \mathbf{w}^{t} \mathbf{w}+\mathbf{C}^{t} \xi-\boldsymbol{\beta}^{t} \xi$ $-\alpha^{t}\left[\mathrm{Y}\left(\mathrm{X}^{t} \mathbf{w}+b 1\right)-1+\xi\right]$
- Stationarity conditions
- $\nabla_{\mathbf{w}} L=0 \Rightarrow \mathbf{w}^{*}=\mathbf{X Y} \alpha^{*}$ (Representer Theorem)
- $\nabla_{\xi} L=0 \Rightarrow C=\alpha^{*}+\beta^{*}$
- $\nabla_{b} L=0 \Rightarrow \alpha^{* t} \mathrm{Y} \mathbf{1}=\mathbf{0}$
- Complimentary Slackness conditions
- $\alpha_{i}^{*}\left[y_{i}\left(\mathbf{x}_{i}^{t} \mathbf{w}^{*}+b^{*}\right)-1+\xi_{i}^{*}\right]=0$
- $\beta_{i}^{*} \xi_{i}^{*}=0$

Support Vector Classification

- Training data $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, l, \mathbf{x}_{i} \in R^{n}, y_{i}= \pm 1$

$$
\min _{w} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{l} \max \left(0,1-y_{i} \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)\right)
$$

- C: regularization parameter
- High dimensional (maybe infinite) feature space

$$
\phi(\mathbf{x})=\left[\phi_{1}(\mathbf{x}), \phi_{2}(\mathbf{x}), \ldots\right]^{T}
$$

- We omit the bias term b
- w: may have infinite variables

Support Vector Classification (Cont'd)

- The dual problem (finite \# variables)

$$
\begin{array}{ll}
\min _{\alpha} f(\boldsymbol{\alpha})= & \frac{1}{2} \boldsymbol{\alpha}^{T} Q \boldsymbol{\alpha}-\mathbf{e}^{T} \boldsymbol{\alpha} \\
\text { subject to } & 0 \leq \alpha_{i} \leq C, i=1, \ldots, l
\end{array}
$$

where $Q_{i j}=y_{i} y_{j} \phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$ and $\mathbf{e}=[1, \ldots, 1]^{T}$

- At optimum

$$
\mathbf{w}=\sum_{i=1}^{l} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{i}\right)
$$

- Kernel: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \equiv \phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$

Large Dense Quadratic Programming

- $Q_{i j} \neq 0, Q$: an / by / fully dense matrix

$\min _{\alpha} f(\boldsymbol{\alpha})=$	$\frac{1}{2} \boldsymbol{\alpha}^{T} Q \boldsymbol{\alpha}-\mathbf{e}^{T} \boldsymbol{\alpha}$
subject to	$0 \leq \alpha_{i} \leq C, i=1, \ldots, l$

- 50,000 training points: 50,000 variables: $\left(50,000^{2} \times 8 / 2\right)$ bytes $=10 \mathrm{~GB}$ RAM to store Q
- Traditional methods:

Newton, Quasi Newton cannot be directly applied

- Now most use decomposition methods [Osuna et al., 1997, Joachims, 1998, Platt, 1998]

Decomposition Methods

- We consider a one-variable version

Similar to coordinate descent methods

- Select the ith component for update:
$\min _{d} \quad \frac{1}{2}\left(\boldsymbol{\alpha}+d \mathbf{e}_{i}\right)^{T} Q\left(\boldsymbol{\alpha}+d \mathbf{e}_{i}\right)-\mathbf{e}^{T}\left(\boldsymbol{\alpha}+d \mathbf{e}_{i}\right)$
subject to $0 \leq \alpha_{i}+d \leq C$
where

$$
\mathbf{e}_{i} \equiv[\underbrace{0 \ldots 0}_{i-1} 10 \ldots 0]^{T}
$$

- α : current solution; the i th component is changed

Avoid Memory Problems

- The new objective function

$$
\frac{1}{2} Q_{i i} d^{2}+(Q \alpha-\mathbf{e})_{i} d+\text { constant }
$$

- To get $(Q \boldsymbol{\alpha}-\mathbf{e})_{i}$, only Q 's i th row is needed

$$
(Q \boldsymbol{\alpha}-\mathbf{e})_{i}=\sum_{j=1}^{l} Q_{i j} \alpha_{j}-1
$$

- Calculated when needed. Trade time for space
- Used by popular software (e.g., SVM light , LIBSVM)

They update 10 and 2 variables at a time

Decomposition Methods: Algorithm

- Optimal d:

$$
-\frac{(Q \alpha-\mathbf{e})_{i}}{Q_{i i}}=-\frac{\sum_{j=1}^{l} Q_{i j} \alpha_{j}-1}{Q_{i i}}
$$

- Consider lower/upper bounds: $[0, C]$
- Algorithm:

While $\boldsymbol{\alpha}$ is not optimal

1. Select the i th element for update

$$
\text { 2. } \alpha_{i} \leftarrow \min \left(\max \left(\alpha_{i}-\frac{\sum_{j=1}^{\prime} Q_{i j} \alpha_{j}-1}{Q_{i i}}, 0\right), C\right)
$$

Select an Element for Update

Many ways

- Sequential (easiest)
- Permuting $1, \ldots$, / every / steps
- Random
- Existing software check gradient information

$$
\nabla_{1} f(\boldsymbol{\alpha}), \ldots, \nabla_{l} f(\boldsymbol{\alpha})
$$

But is $\nabla f(\boldsymbol{\alpha})$ available?

Select an Element for Update (Cont'd)

- We can easily maintain gradient

$$
\begin{aligned}
& \nabla f(\boldsymbol{\alpha})=Q \boldsymbol{\alpha}-\mathbf{e} \\
& \nabla_{s} f(\boldsymbol{\alpha})=(Q \boldsymbol{\alpha})_{s}-1=\sum_{j=1}^{\prime} Q_{s j} \alpha_{j}-1
\end{aligned}
$$

- Initial $\alpha=0$

$$
\nabla f(\mathbf{0})=-\mathbf{e}
$$

- α_{i} updated to $\bar{\alpha}_{i}$

$$
\nabla_{s} f(\boldsymbol{\alpha}) \leftarrow \nabla_{s} f(\boldsymbol{\alpha})+Q_{s i}\left(\bar{\alpha}_{i}-\alpha_{i}\right), \quad \forall s
$$

- $O(I)$ if $Q_{s i} \forall s$ (ith column) are available

Select an Element for Update (Cont'd)

- No matter maintaining $\nabla f(\boldsymbol{\alpha})$ or not Q's ith row (column) always needed

$$
\bar{\alpha}_{i} \leftarrow \min \left(\max \left(\alpha_{i}-\frac{\sum_{j=1}^{\prime} Q_{i j} \alpha_{j}-1}{Q_{i i}}, 0\right), C\right)
$$

Q is symmetric

- Using $\nabla f(\boldsymbol{\alpha})$ to select i : faster convergence i.e., fewer iterations

Decomposition Methods: Using Gradient

The new procedure

- $\boldsymbol{\alpha}=\mathbf{0}, \nabla f(\boldsymbol{\alpha})=-\mathbf{e}$
- While $\boldsymbol{\alpha}$ is not optimal

1. Select the i th element using $\nabla f(\alpha)$
2. $\bar{\alpha}_{i} \leftarrow \min \left(\max \left(\alpha_{i}-\frac{\sum_{j=1}^{\prime} Q_{i j} \alpha_{j}-1}{Q_{i i}}, 0\right), C\right)$
3. $\nabla_{s} f(\boldsymbol{\alpha}) \leftarrow \nabla_{s} f(\boldsymbol{\alpha})+Q_{s i}\left(\bar{\alpha}_{i}-\alpha_{i}\right), \forall s$

Cost per iteration

- $O(I n), I: \#$ instances, $n: \#$ features
- Assume each $Q_{i j}=y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ takes $O(n)$

Linear SVM

- Primal without the bias term b

$$
\min _{\mathbf{w}} \frac{1}{2} \mathbf{w}^{T} \mathbf{w}+C \sum_{i=1}^{l} \max \left(0,1-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

- Dual

$$
\begin{aligned}
\min _{\alpha} f(\boldsymbol{\alpha})= & \frac{1}{2} \boldsymbol{\alpha}^{T} Q \boldsymbol{\alpha}-\mathbf{e}^{T} \boldsymbol{\alpha} \\
\text { subject to } & 0 \leq \alpha_{i} \leq C, \forall i
\end{aligned}
$$

- $Q_{i j}=y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$

Revisit Decomposition Methods

- While $\boldsymbol{\alpha}$ is not optimal

1. Select the ith element for update
2. $\alpha_{i} \leftarrow \min \left(\max \left(\alpha_{i}-\frac{\sum_{j=1}^{\prime} Q_{j j} \alpha_{j}-1}{Q_{i j}}, 0\right), C\right)$

- O(In) per iteration; n : \# features, I: \# data
- For linear SVM, define

$$
\mathbf{w} \equiv \sum_{j=1}^{l} y_{j} \alpha_{j} \mathbf{x}_{j} \in R^{n}
$$

- $O(n)$ per iteration
$\sum_{j=1}^{\prime} Q_{i j} \alpha_{j}-1=\sum_{j=1}^{\prime} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j} \alpha_{j}-1=y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}-1$
- All we need is to maintain w. If

$$
\bar{\alpha}_{i} \leftarrow \alpha_{i}
$$

then $O(n)$ for

$$
\mathbf{w} \leftarrow \mathbf{w}+\left(\bar{\alpha}_{i}-\alpha_{i}\right) y_{i} \mathbf{x}_{i}
$$

- Initial w

$$
\boldsymbol{\alpha}=\mathbf{0} \quad \Rightarrow \quad \mathbf{w}=\mathbf{0}
$$

- Give up maintaining $\nabla f(\boldsymbol{\alpha})$
- Select i for update

Sequential, random, or
Permuting $1, \ldots$, / every / steps

Algorithms for Linear and Nonlinear SVM

Linear:

- While $\boldsymbol{\alpha}$ is not optimal

1. Select the i th element for update
2. $\bar{\alpha}_{i} \leftarrow \min \left(\max \left(\alpha_{i}-\frac{y_{i} \mathbf{w}^{\top} x_{i}-1}{Q_{i i}}, 0\right), C\right)$
3. $\mathbf{w} \leftarrow \mathbf{w}+\left(\bar{\alpha}_{i}-\alpha_{i}\right) y_{i} \mathbf{x}_{i}$

Nonlinear:

- While $\boldsymbol{\alpha}$ is not optimal

1. Select the ith element using $\nabla f(\boldsymbol{\alpha})$
2. $\bar{\alpha}_{i} \leftarrow \min \left(\max \left(\alpha_{i}-\frac{\sum_{j=1}^{\prime} Q_{i j} \alpha_{j}-1}{Q_{i i}}, 0\right), C\right)$

$$
\text { 3. } \nabla_{s} f(\boldsymbol{\alpha}) \leftarrow \nabla_{s} f(\boldsymbol{\alpha})+Q_{s i}\left(\bar{\alpha}_{i}-\alpha_{i}\right), \forall s
$$

Analysis

- Decomposition method for nonlinear (also linear): $O(I n)$ per iteration (used in LIBSVM)
- New way for linear:
$O(n)$ per iteration (used in LIBLINEAR)
- Faster if \# iterations not / times more
- Experiments

Problem	I: \# data	$n:$ \# features
news20	19,996	$1,355,191$
yahoo-japan	176,203	832,026
rcv1	677,399	47,236
yahoo-korea	460,554	$3,052,939$

Testing Accuracy versus Training Time

news20

rcv1

yahoo-japan

yahoo-korea

