
SO
FT

W
A

R
E

Approaches & Technologies

Chapter 1

Overview of Software Engineering

School of Data & Computer Science

Sun Yat-sen University

TE
ST

IN
G

SOFTWARE TESTING: Approaches and Technologies 2 / 92

OUTLINE

■ 1.1 软件与软件危机

■ 1.2 软件开发与软件工程

■ 1.3 软件生命周期模型

■ 1.4 软件质量标准

■ 1.5 敏捷开发

■ 1.6 软件生命周期过程

SOFTWARE TESTING: Approaches and Technologies 3 / 92

敏捷开发

■ 敏捷开发概述

 敏捷开发的起源

 敏捷建模 (Agile Modeling, AM) 源于 Scott W. Ambler的 Extreme

Modeling (XM, 2000)。2001年以 Kent Beck, Alistair Cockburn,

Ward Cunningham, Martin Fowler 等人为首在 Snowbird, Utah 发

布《敏捷宣言》，决定将 Agile 作为新的轻量级软件开发过程的

家族名称。

 敏捷建模是一种态度，而不是一个说明性过程。它是从软件开

发过程实践中归纳总结出来的一些价值观、原则和实践。

 敏捷建模不是一个完整的方法论，而是对已有生命周期模型的

补充，在应用传统的生命周期模型时可以借鉴敏捷建模的过程

指导思想。

 http://agilemanifesto.org/

SOFTWARE TESTING: Approaches and Technologies 4 / 92

敏捷开发

■ 敏捷开发概述
 Manifesto for Agile Software Development m(敏捷宣言)

SOFTWARE TESTING: Approaches and Technologies 5 / 92

敏捷开发

■ 敏捷开发概述
 Manifesto for Agile Software Development

 We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value

 Individuals and Interactions over processes and tools
 Working Software over comprehensive documentation
 Customer Collaboration over contract negotiation
 Responding to Change over following a plan

 That is, while there is value in the items on the right, they value the
items on the left more.

SOFTWARE TESTING: Approaches and Technologies 6 / 92

敏捷开发

■ 敏捷开发概述

 Manifesto for Agile Software Development

 我们一直在实践中探寻更好的软件开发方法，身体力行的同时

也帮助他人。由此我们建立了如下价值观：

 个体和互动高于流程和工具

 工作的软件高于详尽的文档

 客户合作高于合同谈判

 响应变化高于遵循计划

 也就是说，尽管右项有其价值，我们更重视左项的价值。

SOFTWARE TESTING: Approaches and Technologies 7 / 92

敏捷开发

■ 敏捷开发概述
 Manifesto for Agile Software Development

 As Scott Ambler elucidated:
 Tools and processes are important, but it is more important to

have competent people working together effectively.
 Good documentation is useful in helping people to understand

how the software is built and how to use it, but the main point
of development is to create software, not documentation.

 A contract is important but is no substitute for working closely
with customers to discover what they need.

 A project plan is important, but it must not be too rigid to
accommodate changes in technology or the environment,
stakeholders' priorities, and people's understanding of the
problem and its solution.

SOFTWARE TESTING: Approaches and Technologies 8 / 92

敏捷开发

■ 敏捷开发概述
 Manifesto for Agile Software Development

 We follow these principles:
(1) Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.
(2) Welcome changing requirements, even late in development. Agile

processes harness change for the customer's competitive
advantage.

(3) Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

(4) Business people and developers must work together daily
throughout the project.

(5) Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done.

(6) The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

SOFTWARE TESTING: Approaches and Technologies 9 / 92

敏捷开发

■ 敏捷开发概述
 Manifesto for Agile Software Development

 We follow these principles:
(7) Working software is the primary measure of progress.
(8) Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace
indefinitely.

(9) Continuous attention to technical excellence and good design
enhances agility.

(10) Simplicity--the art of maximizing the amount of work not done--is
essential.

(11) The best architectures, requirements, and designs emerge from
self-organizing teams.

(12) At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

SOFTWARE TESTING: Approaches and Technologies 10 / 92

敏捷开发

■ 敏捷开发概述

 敏捷宣言遵循的12条原则：
(1) 我们最重要的目标，是通过持续不断地及早交付有价值的软件使客户
满意。

(2) 欣然面对需求变化，即使在开发后期也一样。为了客户的竞争优势，
敏捷过程掌控变化。

(3) 经常地交付可工作的软件，相隔几星期或一两个月，倾向于采取较短
的周期。

(4) 业务人员和开发人员必须相互合作，项目中的每一天都不例外。
(5) 激发个体的斗志，以他们为核心搭建项目。提供所需的环境和支援，
辅以信任，从而达成目标。

(6) 不论团队内外，传递信息效果最好效率也最高的方式是面对面交谈。
(7) 可工作的软件是进度的首要度量标准。
(8) 敏捷过程倡导可持续开发。责任人、开发人员和用户要能够共同维持
其步调稳定延续。

(9) 坚持不懈地追求技术卓越和良好设计，敏捷能力由此增强。
(10)以简洁为本，它是极力减少不必要工作量的艺术。
(11)最好的架构、需求和设计出自自组织团队。
(12)团队定期地反思如何能提高成效，并依此调整自身的举止表现。

SOFTWARE TESTING: Approaches and Technologies 11 / 92

敏捷开发

■ 敏捷开发概述

 敏捷宣言遵循的12条原则：

(1) 我们最重要的目标，是通过尽早和持续地交付有价值的软件来使客户

满意。

(2) 欢迎需求的变更—即使是在项目开发后期。要善于利用需求变更，帮

助客户获得竞争优势。

(3) 不断交付可用的软件，周期从几周到几个月不等，且越短越好。

(4) 在整个项目过程中，业务人员与开发人员每天在一起工作。

(5) 激励项目人员，以他们为核心构建项目，给他们以所需要的环境和支

持，并相信他们能够完成任务。

(6) 无论团队内还是团队间，最有效的沟通方法是面对面的交谈。

(7) 可工作的软件是衡量进度的主要指标。

(8) 敏捷过程提倡可持续的开发。项目方、开发人员和用户应该能够保持

恒久稳定的进展速度。

(9) 对技术的精益求精以及对设计的不断完善将提升敏捷性。

(10)以简洁为本。简洁是尽可能减少不必要的工作量的艺术。

(11)最佳的架构、需求和设计出自于自组织团队。

(12)团队要定期反省如何能够做到更有效，并相应地调整团队的行为。

SOFTWARE TESTING: Approaches and Technologies 12 / 92

敏捷开发

■ 敏捷开发概述

 敏捷开发的目标

 敏捷开发的总体目标是通过“尽可能早地、持续地对有价值软

件的交付”，使客户满意。

 敏捷开发强调软件开发应当能够对未来可能出现的变化和不确

定性作出全面反应。

 敏捷开发主要用于在需求模糊或快速变化的前提下，支持小型

开发团队的软件开发活动。

SOFTWARE TESTING: Approaches and Technologies 13 / 92

敏捷开发

■ 敏捷开发概述

 敏捷开发的管理原则

 敏捷开发是一种以人为核心、迭代、循序渐进的开发过程指导

思想。

 在敏捷开发过程中，软件项目的构建被切分成多个子项目分别

实现。各个子项目之间相互联系、独立运行，子项目的成果经

过测试，具备集成和可运行的特征。

SOFTWARE TESTING: Approaches and Technologies 14 / 92

敏捷开发

■ 敏捷开发概述

 敏捷开发的核心实践

 项目关键利益方 (Project Stakeholder) 的积极参与

 正确使用工件

 集体所有制 (对代码、工件、模型的共有，包括使用和修改)

 测试性思维 (比如“测试优先”)

 并行创建模型 (为一个问题同时建立多种模型)

 创建简单的内容

 简单地建模

 公开展示模型 (使用modeling wall 向项目参与各方展示)

 切换到另外的工件 (遇到困难时的敏捷切换)

 小增量建模

 和他人一起建模

 用代码验证模型

 使用最简单的建模工具

SOFTWARE TESTING: Approaches and Technologies 15 / 92

敏捷开发

■ 敏捷开发概述

 敏捷开发的补充实践

 使用建模标准 (比如 UML)

 逐渐应用模式 (pattern)

 丢弃临时模型

 合同模型要正式

 为外部交流建模

 为帮助理解建模

 重用现有的资源

 不到万不得已不更新模型

SOFTWARE TESTING: Approaches and Technologies 16 / 92

敏捷开发

■ 规模化敏捷开发
 Agile at Scale (SEI Blog/SPRUCE -- Systems and Software Producibility

Collaboration Environment, SEI, CMU)
 Why is Agile at Scale Challenging

 Agile practices, derived from a set of foundational principles,
have been applied successfully for well over a decade and have
enjoyed broad adoption in the commercial sector, with the net
result that development teams have gotten better at building
software. Reasons for these improvements include

◌ increased visibility into a project and the emerging
product,

◌ increased responsibility of development teams, the ability
for customers and end users to interact early with
executable code, and

◌ the direct engagement of the customer or product owner
in the project to provide a greater sense of shared
responsibility.

SOFTWARE TESTING: Approaches and Technologies 17 / 92

敏捷开发

■ 规模化敏捷开发
 Agile at Scale

 Why is Agile at Scale Challenging
 Business and mission goals, however, are larger than a single

development team. Applying Agile at Scale, in particular in
DoD-scale environments, therefore requires answering several
questions in three dimensions:

(1) Team size
(2) Complexity
(3) Duration

SOFTWARE TESTING: Approaches and Technologies 18 / 92

敏捷开发

■ 规模化敏捷开发
 Agile at Scale

 Why is Agile at Scale Challenging
(1) Team size. What happens when Agile practices are used in a 100-

person (or larger) development team? What happens when the
development team needs to interact with the rest of the business,
such as quality assurance, system integration, project
management, and marketing, to get input into product
development and collaborate on the end-to-end delivery of the
product? Scrum and Agile methods, such as extreme programming
(XP), are typically used by small teams of at most 7-to-10 people.
Larger teams require orchestration of both multiple (sub)teams
and cross-functional roles beyond development. Organizations
have recently been investigating approaches, such as Scaled Agile
Framework, to better manage the additional coordination issues
associated with increased team size.

SOFTWARE TESTING: Approaches and Technologies 19 / 92

敏捷开发

■ 规模化敏捷开发
 Agile at Scale

 Why is Agile at Scale Challenging
(2) Complexity. Large-scale systems are often large in scope relative to

the number of features, the amount of new technology being
introduced, the number of independent systems being integrated,
the number and types of users to accommodate, and the number
of external systems with which the system communicates. Does
the system have stringent (严苛的) quality attributes (质量特性
) needs, such as stringent real-time, high-reliability, and security
requirements? Are there multiple external stakeholders and
interfaces? Typically, such systems must go through rigorous
verification and validation (V&V), which complicate the frequent
deployment practices used in Agile development.

SOFTWARE TESTING: Approaches and Technologies 20 / 92

敏捷开发

■ 规模化敏捷开发
 Agile at Scale

 Why is Agile at Scale Challenging
(3) Duration. How long will the system be in development? How long

in operations and sustainment? Larger systems need to be in
development and operation for a longer period of time than
products to which agile development is typically applied, requiring
attention to future changes, possible redesigns, as well as
maintaining several delivered versions. Answers to these questions
affect the choice of quality attributes supporting system
maintenance and evolution goals that are key to system success
over the long term.

SOFTWARE TESTING: Approaches and Technologies 21 / 92

敏捷开发

■ 规模化敏捷开发
 Agile at Scale

 10 Recommended Practices for Achieving Agile at Scale
(1) Make team coordination top priority
(2) Use an architectural runway to manage technical complexity
(3) Align feature-based development and system decomposition
(4) Use quality-attribute scenarios to clarify architecturally

significant requirements
(5) Use test-driven development for early and continuous focus

on verification
(6) Use end-to-end testing for early insight into emerging system

properties.
(7) Use continuous integration for consistent attention to

integration issues.
(8) Consider recent field study management as an approach to

manage system development strategically.

SOFTWARE TESTING: Approaches and Technologies 22 / 92

敏捷开发

■ 规模化敏捷开发
 Agile at Scale

 10 Recommended Practices for Achieving Agile at Scale
(9) Use prototyping to rapidly evaluate and resolve significant

technical risks.
(10) Use architectural evaluations to ensure that architecturally

significant requirements are being addressed.

SOFTWARE TESTING: Approaches and Technologies 23 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(1) Make team coordination top priority.
 Scrum is the most common Agile project management method used

today, and primarily involves team management practices. In its
simplest instantiation, a Scrum development environment consists of
a single Scrum team with the skills, authority, and knowledge required
to specify requirements, architect, design, code, and test the
system. As systems grow in size and complexity, the single team mode
may no longer meet development demands. If a project has already
decided to use a Scrum-like project-management technique, the
Scrum approach can be extended to managing multiple teams with a
"Scrum of Scrums," a special coordination team whose role is to (1)
define what information will flow between and among development
teams (addressing inter-team dependencies and communication) and
(2) identify, analyze, and resolve coordination issues and risks that
have potentially broader consequences (e.g., for the project as a
whole).

SOFTWARE TESTING: Approaches and Technologies 24 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(1) Make team coordination top priority.
 A Scrum of Scrums typically consists of members from each team

chosen to address end-to-end functionality or cross-cutting concerns
such as user interface design, architecture, integration testing, and
deployment. Creating a special team responsible for inter-team
coordination helps ensure that the right information, including
measurements, issues, and risks, is communicated between and
among teams. Care needs to be taken, however, when the Scrum of
Scrums team itself gets large to not overwhelm the team. This scaling
can be accomplished by organizing teams--and the Scrum of Scrums
team itself--along feature and service affinities. We further discuss
this approach to organizing teams in our feature-based development
and system decomposition practice. Such orchestration is essential to
managing larger teams to success, including Agile teams.

SOFTWARE TESTING: Approaches and Technologies 25 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(2) Use an architectural runway to manage technical complexity.
 Stringent safety or mission-critical requirements increase technical

complexity and risk. Technical complexity arises when the work takes
longer than a single iteration or release cycle and cannot be easily
partitioned and allocated to different technical competencies (or
teams) to independently and concurrently develop their part of a
solution. Successful approaches to managing technical complexity
include having the most-urgent system or software architecture
features well defined early (or even pre-defined at the organizational
level, e.g., as infrastructure platforms or software product lines).

 The Agile term for such pre-staging of architectural features that can
be leveraged by development teams is "architectural runway." The
architectural runway has the goal of providing the degree of stability
required to support future iterations of development. This stability is
particularly important to the successful operation of multiple teams.

 A system or software architect decides which architectural features
must be developed first by identifying the quality attribute
requirements that are architecturally significant for the system.

SOFTWARE TESTING: Approaches and Technologies 26 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(2) Use an architectural runway to manage technical complexity.
 By initially defining (and continuously extending) the architectural

runway, development teams are able to iteratively develop customer-
desired features that use that runway and benefit from the quality
attributes they confer (e.g., security and dependability).

 Having a defined architectural runway helps uncover technical risks
earlier in the lifecycle, thereby helping to manage system complexity
(and avoiding surprises during the integration phase). Uncovering
quality attribute concerns, such as security, performance, or
availability with the underlying architectural late in the lifecycle--that
is, after several iterations have passed--often yields significant rework
and schedule delay. Delivering functionality is more predictable when
the infrastructure for the new features is in place, so it is important to
maintain a continual focus on the architecturally significant
requirements and estimation of when the development teams will
depend on having code that implements an architectural solution.

SOFTWARE TESTING: Approaches and Technologies 27 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(3) Align feature-based development and system decomposition.
 A common approach in Agile teams is to implement a feature (or user

story) in all the components of the system. This approach gives the
team the ability to focus on something that has stakeholder value. The
team controls every piece of implementation for that feature and
therefore they need not wait until someone else outside the team has
finished some required work. We call this approach "vertical
alignment" because every component of the system required for
realizing the feature is implemented only to the degree required by
the team.

 System decomposition could also be horizontal, however, based on
the architectural needs of the system. This approach focuses on
common services and variability mechanisms that promote reuse.

SOFTWARE TESTING: Approaches and Technologies 28 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(3) Align feature-based development and system decomposition.
 The goal of creating a feature-based development and system

decomposition approach is to provide flexibility in aligning teams
horizontally, vertically, or in combination, while minimizing coupling to
ensure progress. Although organizations create products in very
different domains (ranging from embedded systems to enterprise
systems) similar architecture patterns and strategies emerge when a
need to balance rapid progress and agile stability is desired. The
teams create a platform containing commonly used services and
development environments either as frameworks or platform plug-
ins to enable fast feature-based development.

SOFTWARE TESTING: Approaches and Technologies 29 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(4) Use quality-attribute scenarios to clarify architecturally significant
requirements.
 Scrum emphasizes customer-facing requirements--features that end

users dwell on--and indeed these are important to success. But when
the focus on end-user functionality becomes exclusive, the underlying
architecturally significant requirements can go unnoticed.

 Superior practice is to elicit, document, communicate, and validate
underlying quality attribute scenarios during development of the
architectural runway. This approach becomes even more important at
scale when projects often have significant longevity and sustainability
needs. Early in the project, evaluate the quality attribute scenarios to
determine which architecturally significant requirements should be
addressed in early development increments (see architectural runway
practice above) or whether strategic shortcuts can be taken to deliver
end-user capability more quickly.

SOFTWARE TESTING: Approaches and Technologies 30 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(4) Use quality-attribute scenarios to clarify architecturally significant
requirements.
 For example, will the system really have to scale up to a million users

immediately, or is this actually a trial product? There are different
considerations depending on the domain.For example, IT systems use
existing frameworks, so understanding the quality attribute scenarios
can help developers understand which architecturally significant
requirements might already be addressed adequately within existing
frameworks (including open-source systems) or existing legacy
systems that can be leveraged during software development.
Similarly, such systems must address changing requirements in
security and deployment environments, which necessitates
architecturally significant requirements be given top priority when
dealing with scale.

SOFTWARE TESTING: Approaches and Technologies 31 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(5) Use test-driven development for early and continuous focus on
verification.
 This practice can be summarized as "write your test before you write

the system." When there is an exclusive focus on "sunny-day"
scenarios (a typical developer's mindset), the project becomes overly
reliant on extensive testing at the end of the project to identify
overlooked scenarios and interactions. Therefore, be sure to focus on
rainy-day scenarios (e.g., consider different system failure modes), as
well as sunny-day scenarios. The practice of writing tests first,
especially at the business or system level (which is known
as acceptance test-driven development) reinforces the other practices
that identify the more challenging aspects and properties of the
system, especially quality attributes and architectural concerns (see
architectural runway and quality-attribute scenarios practices above).

SOFTWARE TESTING: Approaches and Technologies 32 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(6) Use end-to-end testing for early insight into emerging system
properties.
 To successfully derive the full benefit from test-driven development at

scale, consider early and continuous end-to-end testing of system
scenarios. When teams test only the features for which they are
responsible, they lose insight into overall system behavior (and how
their efforts contribute to achieving it). Each small team could be
successful against its own backlog, but someone needs to look after
broader or emergent system properties and implications. For
example, who is responsible for the fault tolerance of the system as a
whole? Answering such questions requires careful orchestration of
development with verification activities early and throughout
development. When testing end-to-end, take into account different
operational contexts, environments, and system modes.

SOFTWARE TESTING: Approaches and Technologies 33 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(6) Use end-to-end testing for early insight into emerging system
properties.
 At scale, understanding end-to-end functionality requires its

elicitation and documentation. These goals can be achieved through
the application of agile requirements management techniques, such
as stories, as well as use of architecturally significant requirements. If
there is a need to orchestrate multiple systems, however, a more
deliberate elicitation of end-to-end functionality as mission/business
threads should provide a better result.

SOFTWARE TESTING: Approaches and Technologies 34 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(7) Use continuous integration for consistent attention to integration
issues.
 This basic Agile practice becomes even more important at scale, given

the increased number of subsystems that must work together and
whose development must be orchestrated. One implication is that the
underlying infrastructure developers will use day-to-day must be able
to support continuous integration. Another is that developers focus
on integration earlier, identifying the subsystems and existing
frameworks that will need to integrate. This identification has
implications for the architectural runway, quality-attribute scenarios,
and orchestration of development and verification activities
presented in our earlier blog posting. Useful measures for managing
continuous integration include rework rate and scrap rate. It is also
important to start early in the project to identify issues that can arise
during integration. What this means more broadly is that both
integration and the ability to integrate must be managed in the Agile
environment.

SOFTWARE TESTING: Approaches and Technologies 35 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(8) Consider recent field study management as an approach to
manage system development strategically.
 The concept of technical debt arose naturally from the use of Agile

methods, where the emphasis on releasing features quickly often
creates a need for rework later. At scale, there may be multiple
opportunities for shortcuts, so understanding technical debt and its
implications becomes a means for strategically managing the
development of the system. For example, there might be cases where
certain architectural selections made to accelerate delivery have long-
term consequences. A recent field study the SEI conducted with
software developers also strongly supports that the leading sources of
technical debt are architectural choices. Such tradeoffs must be
understood and managed based on both qualitative and quantitative
measurements of the system.

SOFTWARE TESTING: Approaches and Technologies 36 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(8) Consider recent field study management as an approach to
manage system development strategically.
 Qualitatively, architecture evaluations can be used as part of the

product demos or retrospectives that Agile advocates. Quantitative
measures are harder but can arise from understanding productivity,
system uncertainty, and measures of rework (e.g., when uncertainty is
greater, it may make more sense to incur more rework later).

SOFTWARE TESTING: Approaches and Technologies 37 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(9) Use prototyping to rapidly evaluate and resolve significant
technical risks.
 To address significant technical issues, teams employing Agile

methods will sometimes perform what in Scrum is referred to as
a technical spike, in which a team branches out from the rest of the
project to investigate a specific technical issue, develop one or more
prototypes to evaluate possible solutions, and report what they
learned to the project team so that they can proceed with greater
likelihood of success. A technical spike may extend over
multiple sprints, depending on the seriousness of the issue and how
much time it takes to investigate the issue and report information that
the project can use.

SOFTWARE TESTING: Approaches and Technologies 38 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(9) Use prototyping to rapidly evaluate and resolve significant
technical risks.
 At scale, technical risks having severe consequences are typically more

numerous. Prototyping (and other approaches to evaluating
candidate solutions such as simulation and demonstration) can
therefore be an essential early planning but also recurring. A goal of
Agile methods is increased early visibility. From that perspective,
prototyping is a valuable means of achieving visibility more quickly for
technical risks and their mitigations. The practice of making team
coordination top priority as mentioned earlier has a role here, too, to
help orchestrate reporting what was learned from prototyping to the
overall system.

SOFTWARE TESTING: Approaches and Technologies 39 / 92

敏捷开发

■ 规模化敏捷开发
 10 Recommended Practices for Achieving Agile at Scale

(10) Use architectural evaluations to ensure that architecturally
significant requirements are being addressed.
 While not considered part of mainstream Agile practice, architecture

evaluations have much in common with Agile methods in seeking to
bring a project's stakeholders together to increase their visibility into
and commitment to the project, as well as to identify overlooked
risks. At scale, architectural issues become even more important, and
architecture evaluations thus have a critical role on the project.
Architecture evaluation can be formal, as in the SEI's Architecture
Tradeoff Analysis Method, which can be performed, for example, early
in the Agile project lifecycle before the project's development teams
are launched, or recurrently. There is also an important role for lighter
weight evaluations in project retrospectives to evaluate progress
against architecturally significant requirements.

SOFTWARE TESTING: Approaches and Technologies 40 / 92

敏捷开发

■ 敏捷开发方法分类

 XP

 XP (极限编程) 提倡测试先行，目的在于将后面出现缺陷的概率

降至最低。

 Scrum

 Scrum 是一种迭代的增量化过程，用于产品开发或工作管理。

 Crystal Methods

 Crystal Methods (水晶方法系列) 与 XP 一样，都是以人为中心，

但不同类型的项目需要不同的实践方法。

 FDD

 FDD (特性驱动开发) 是一套针对中小型软件开发项目的开发模

式，采用模型驱动的快速迭代开发过程。

SOFTWARE TESTING: Approaches and Technologies 41 / 92

敏捷开发

■ 敏捷开发方法分类

 ASD

 ASD (自适应软件开发) 从复杂自适应系统理论派生出来，用于

对需求多变、开发周期短项目的管理。

 DSDM

 DSDM (动态系统开发方法) 倡导以业务为核心，快速而有效地

进行系统开发。

 RUP

 RUP 是一个过程框架，它可以包容许多不同类型的过程，但核

心还是面向对象过程。

SOFTWARE TESTING: Approaches and Technologies 42 / 92

敏捷开发

■ Scrum
 Scrum is an agile framework for managing knowledge work, with an

emphasis on software development. It is designed for teams of 3-to-9
members, who break their work into actions that can be completed
within time-boxed iterations, called sprints, no longer than one month
and most commonly two weeks, then track progress and re-plan in 15-
minute time-boxed stand-up meetings, called daily scrums.

 History of Scrum
 Scrum is a lightweight, iterative and incremental framework for

managing product development. It defines “a flexible, holistic (整体
的) product development strategy where a development team
works as a unit to reach a common goal", challenges assumptions
of the "traditional, sequential approach" (Hirotaka Takeuchi and
Ikujiro Nonaka, 1986) to product development, and enables teams
to self-organize by encouraging physical co-location or close online
collaboration of all team members, as well as daily face-to-face
communication among all team members and disciplines involved.

SOFTWARE TESTING: Approaches and Technologies 43 / 92

敏捷开发

■ Scrum
 History of Scrum

 Takeuchi and Nonaka described a new approach to
commercial product development that would increase speed and
flexibility, based on case studies from manufacturing firms in the
automotive, photocopier and printer industries. They called this
the holistic or rugby approach, as the whole process is performed
by one cross-functional team across multiple overlapping phases,
where the team "tries to go the distance as a unit, passing the ball
back and forth".

 In rugby football, a scrum refers to the manner of restarting the
game after a minor infraction. In the early 1990s, Ken
Schwaber used what would become Scrum at his company,
Advanced Development Methods, and Jeff Sutherland, with John
Scumniotales and Jeff McKenna, developed a similar approach at
Easel Corporation, and were the first to refer to it using the single
word Scrum.

SOFTWARE TESTING: Approaches and Technologies 44 / 92

敏捷开发

■ Scrum
 History of Scrum

 In 1995, Sutherland and Schwaber jointly presented a paper
describing the Scrum methodology at the Business Object Design
and Implementation Workshop held as part of Object-Oriented
Programming, Systems, Languages & Applications '95 (OOPSLA '95)
in Austin, Texas, its first public presentation. Schwaber and
Sutherland collaborated during the following years to merge the
above writings, their experiences, and industry best practices into
what is now known as Scrum.

 In 2001, Schwaber worked with Mike Beedle to describe the
method in the book Agile Software Development with Scrum.

 Its approach to planning and managing projects is to bring decision-
making authority to the level of operation properties and
certainties.

SOFTWARE TESTING: Approaches and Technologies 45 / 92

敏捷开发

■ Scrum
 History of Scrum

 Although the word is not an acronym, some companies
implementing the process have been known to spell it with capital
letters as SCRUM. This may be due to one of Ken Schwaber's early
papers, which capitalized SCRUM in the title.

 While the trademark on the term Scrum itself has been allowed to
lapse, so that it is deemed as owned by the wider community
rather than an individual, the leading capital is retained—except
when used with other words (as in daily scrum or scrum team).

 Hybridization of scrum is common as scrum does not cover the
whole product development lifecycle; therefore, organizations find
the need to add in additional processes to create a more
comprehensive implementation. For example, at the start of the
project, organizations commonly add process guidance on
requirements gathering and prioritization, initial high-level design,
and budget and schedule forecasting.

SOFTWARE TESTING: Approaches and Technologies 46 / 92

敏捷开发

■ Scrum
 Key ideas

 A key principle of Scrum is the dual recognition that customers will
change their minds about what they want or need (often called
requirements volatility) and that there will be unpredictable
challenges—for which a predictive or planned approach is not
suited. As such, Scrum adopts an evidence-based empirical (经验主
义的) approach—accepting that the problem cannot be fully
understood or defined up front, and instead focusing on how to
maximize the team's ability to deliver quickly, to respond to
emerging requirements, and to adapt to evolving technologies and
changes in market conditions.

SOFTWARE TESTING: Approaches and Technologies 47 / 92

敏捷开发

■ Scrum
 Roles

 There are three core roles (product owner, development team and

scrum master) and a range of ancillary roles. Core roles are often

referred to as pigs and ancillary roles as chickens (after the

story The Chicken and the Pig). The core roles are those committed

to the project in the Scrum process -- they are the ones producing

the product (objective of the project). They represent the scrum

team.

SOFTWARE TESTING: Approaches and Technologies 48 / 92

敏捷开发

■ Scrum
 Roles

 The Product Owner represents the stakeholders and is the voice of
the customer. He or she is accountable for ensuring that the team
delivers value to the business. The Product Owner writes (or has
the team write) customer-centric items (typically user stories),
ranks and prioritizes them, and adds them to the product backlog.
Scrum teams should have one Product Owner, and while they may
also be a member of the development team, this role should not be
combined with that of the Scrum Master. In an enterprise
environment, though, the Product Owner is often combined with
the role of Project Manager as they have the best visibility
regarding the scope of work (products)

SOFTWARE TESTING: Approaches and Technologies 49 / 92

敏捷开发

■ Scrum
 Roles

 The Development Team is responsible for delivering potentially
shippable product increments at the end of each Sprint (the Sprint
Goal). A Team is made up of 7 +/- 2 individuals with cross-
functional skills who do the actual work (analysis, design, develop,
test, technical communication, document, etc.). The Development
Team in Scrum is self-organizing, even though there may be some
level of interface with project management offices (PMOs).

SOFTWARE TESTING: Approaches and Technologies 50 / 92

敏捷开发

■ Scrum
 Roles

 Scrum is facilitated by a scrum master, who is accountable for
removing impediments to the ability of the team to deliver the
sprint goal/deliverables. The scrum master is not the team leader,
but acts as a buffer between the team and any distracting
influences. The scrum master ensures that the Scrum process is
used as intended. The scrum master is the enforcer of the rules of
Scrum, often chairs key meetings, and challenges the team to
improve. The role has also been referred to as a servant-leader to
reinforce these dual perspectives. The scrum master differs from a
Project Manager in that the latter may have people
management responsibilities unrelated to the role of scrum master.
The scrum master role excludes any such additional people
responsibilities.

SOFTWARE TESTING: Approaches and Technologies 51 / 92

敏捷开发

■ Scrum
 Workflows in the Scrum framework

(1) A Sprint (or iteration) is the basic unit of development in Scrum.
The sprint is a time-boxed effort; that is, it is restricted to a specific
duration. The duration is fixed in advance for each sprint and is
normally between one week and one month, with two weeks being
the most common.
 Each sprint starts with a sprint planning event that aims to

define a sprint backlog, identify the work for the sprint, and
make an estimated forecast for the sprint goal. Each sprint
ends with a sprint review and sprint retrospective, that reviews
progress to show to stakeholders and identify lessons and
improvements for the next sprints.

 Scrum emphasizes working product at the end of the sprint
that is really done. In the case of software, this likely includes
that the software has been fully integrated, tested and
documented, and is potentially releasable.

SOFTWARE TESTING: Approaches and Technologies 52 / 92

敏捷开发

■ Scrum
 Workflows in the Scrum framework

(2) At the beginning of a sprint, the scrum team holds a Sprint
Planning event to:
 Mutually discuss and agree on the scope of work that is

intended to be done during that sprint
 Select product backlog items that can be completed in one

sprint
 Prepare a sprint backlog that includes the work needed to

complete the selected product backlog items
 Once the development team has prepared their sprint backlog,

they forecast (usually by voting) which tasks will be delivered
within the sprint.

SOFTWARE TESTING: Approaches and Technologies 53 / 92

敏捷开发

■ Scrum
 Workflows in the Scrum framework

(2) At the beginning of a sprint, the scrum team holds a Sprint
Planning event to:
 The recommended duration is four hours for a two-week sprint

(pro-rata for other sprint durations)
◌ During the first half, the whole scrum team (development

team, scrum master, and product owner) selects the
product backlog items they believe could be completed in
that sprint.

◌ During the second half, the development team identifies
the detailed work (tasks) required to complete those
product backlog items; resulting in a confirmed sprint
backlog.

◌ As the detailed work is elaborated, some product backlog
items may be split or put back into the product backlog if
the team no longer believes they can complete the
required work in a single sprint.

SOFTWARE TESTING: Approaches and Technologies 54 / 92

敏捷开发

■ Scrum
 Workflows in the Scrum framework

(3) Each day during a sprint, the team holds a Daily Scrum (or stand-
up) with specific guidelines:
 All members of the development team come prepared. The

daily scrum:
◌ starts precisely on time even if some development team

members are missing
◌ should happen at the same time and place every day
◌ is limited (time-boxed) to fifteen minutes

 Anyone is welcome, though only development team members
should contribute.

SOFTWARE TESTING: Approaches and Technologies 55 / 92

敏捷开发

■ Scrum
 Workflows in the Scrum framework

(3) Each day during a sprint, the team holds a Daily Scrum (or stand-
up) with specific guidelines:
 During the daily scrum, each team member typically answers

three questions:
◌ What did I complete yesterday that contributed to the

team meeting our sprint goal?
◌ What do I plan to complete today to contribute to the

team meeting our sprint goal?
◌ Do I see any impediment that could prevent me or the

team from meeting our sprint goal?
 Any impediment identified in the daily scrum should be

captured by the scrum master and displayed on the team's
scrum board or on a shared risk board, with an agreed person
designated to working toward a resolution (outside of the daily
scrum). No detailed discussions should happen during the daily
scrum.

SOFTWARE TESTING: Approaches and Technologies 56 / 92

敏捷开发

■ Scrum
 Workflows in the Scrum framework

(4) At the end of a sprint, the team holds two events: the Sprint
Review and the Sprint Retrospective.
 At the sprint review, the team:

◌ reviews the work that was completed and the planned
work that was not completed

◌ presents the completed work to the stakeholders (a.k.a.
the demo)

◌ collaborates with the stakeholders on what to work on
next

 Guidelines for sprint reviews:
◌ Incomplete work cannot be demonstrated.
◌ The recommended duration is two hours for a two-week

sprint (proportional for other sprint-durations)

SOFTWARE TESTING: Approaches and Technologies 57 / 92

敏捷开发

■ Scrum
 Workflows in the Scrum framework

(4) At the end of a sprint, the team holds two events: the Sprint
Review and the Sprint Retrospective.
 At the sprint retrospective, the team:

◌ Reflects on the past sprint
◌ Identifies and agrees on continuous process improvement

actions
 Guidelines for sprint retrospectives:

◌ Three main questions are asked in the sprint retrospective:
What went well during the sprint? What did not go well?
What could be improved for better productivity in the next
sprint?

◌ The recommended duration is one-and-a-half hours for a
two-week sprint (proportional for other sprint duration(s))

◌ This event is facilitated by the scrum master

SOFTWARE TESTING: Approaches and Technologies 58 / 92

敏捷开发

■ Scrum
 Artifacts in the Scrum framework

 Product Backlog
 The product backlog is a model of work to be done and

contains an ordered list of product requirements that a scrum
team maintains for a product. The format of product backlog
items varies, common formats include user stories, use cases,
or any other requirements format the team finds useful. These
will define features, bug fixes, non-functional requirements,
etc.—whatever must be done to successfully deliver a viable
product. The product owner prioritizes product backlog items
(PBIs) based on considerations such as risk, business value,
dependencies, size, and date needed.

 The product backlog is what will be delivered, ordered into the
sequence in which it should be delivered. It is visible to
everyone but may only be changed with the consent of the
product owner, who is ultimately responsible for ordering
product backlog items for the development team to choose.

SOFTWARE TESTING: Approaches and Technologies 59 / 92

敏捷开发

■ Scrum
 Artifacts in the Scrum framework

 Sprint Backlog
 The sprint backlog is the list of work the development team

must address during the next sprint. The list is derived by the
scrum team progressively selecting product backlog items in
priority order from the top of the product backlog until they
feel they have enough work to fill the sprint. The development
team should keep in mind its past performance assessing its
capacity for the new-sprint, and use this as a guideline of how
much 'effort' they can complete.

 The product backlog items may be broken down into tasks by
the development team. Tasks on the sprint backlog are never
assigned (or pushed) to team members by someone else;
rather team members sign up for (or pull) tasks as needed
according to the backlog priority and their own skills and
capacity. This promotes self-organization of the development
team and developer buy-in.

SOFTWARE TESTING: Approaches and Technologies 60 / 92

敏捷开发

■ Scrum
 Artifacts in the Scrum framework

 Product Increment
 The potentially releasable increment is the sum of all the

product backlog items completed during a sprint, integrated
with the work of all previous sprints. At the end of a sprint, the
increment must be complete, according to the scrum team's
definition of "done", fully functioning, and in a usable
condition regardless of whether the product owner decides to
actually release it.

SOFTWARE TESTING: Approaches and Technologies 61 / 92

敏捷开发

■ Scrum
 Artifacts in the Scrum framework

 Some Extensions
 Sprint burn-down chart
 Release burn-up chart
 Definition of done (DoD)
 Velocity
 Spike
 Research
 Tracer bullet

SOFTWARE TESTING: Approaches and Technologies 62 / 92

敏捷开发

■ Scrum
 The following terminology is used in Scrum

 Scrum Team
 Product Owner, Scrum Master and Development Team.

 Product Owner
 The person responsible for maintaining the Product Backlog by

representing the interests of the stakeholders, and ensuring
the value of the work the Development Team does.

 Scrum Master
 The person responsible for the Scrum process, making sure it is

used correctly and maximizing its benefits.
 Development Team

 A cross-functional group of people responsible for delivering
potentially shippable increments of Product at the end of every
Sprint.

 Sprint Burn Down Chart
 Daily progress for a Sprint over the sprint's length.

SOFTWARE TESTING: Approaches and Technologies 63 / 92

敏捷开发

■ Scrum
 The following terminology is used in Scrum

 Release Burn Down Chart
 Sprint level progress of completed stories in the Product

Backlog.
 Product Backlog

 A prioritized list of high-level requirements.
 Sprint Backlog

 A prioritized list of tasks to be completed during the sprint.
 Sprint

 A time period (typically 1–4 weeks) in which development
occurs on a set of backlog items that the team has committed
to. Also commonly referred to as a Time-box or iteration.

SOFTWARE TESTING: Approaches and Technologies 64 / 92

敏捷开发

■ Scrum
 The following terminology is used in Scrum

 (User) Story
 A feature that is added to the backlog is commonly referred to

as a story and has a specific suggested structure. The structure
of a story is: "As a <user type> I want to <do some action> so
that <desired result>" This is done so that the development
team can identify the user, action and required result in a
request and is a simple way of writing requests that anyone
can understand. Example: As a wiki user I want a tools menu
on the edit screen so that I can easily apply font formatting. A
story is an independent, negotiable, valuable, estimable, small,
testable requirement ("INVEST"). Despite being independent,
i.e., they have no direct dependencies with other
requirements, stories may be clustered into epics when
represented on a product roadmap or further down in the
backlog.

SOFTWARE TESTING: Approaches and Technologies 65 / 92

敏捷开发

■ Scrum
 The following terminology is used in Scrum

 Theme
 A theme is a top-level objective that may span projects and

products. Themes may be broken down into sub-themes,
which are more likely to be product-specific. Themes can be
used at both program and project level to drive strategic
alignment and communicate a clear direction.

 Epic (史诗)
 An epic is a group of related stories, mainly used in product

roadmaps and the backlog for features that have not yet been
analyzed enough to break down into component stories, which
should be done before bringing it into a sprint so to reduce
uncertainty. Epics can also be used at both program and
project level.

SOFTWARE TESTING: Approaches and Technologies 66 / 92

敏捷开发

■ Scrum
 The following terminology is used in Scrum

 Spike
 A time boxed period used to research a concept and/or create

a simple prototype. Spikes can either be planned to take place
in between sprints or, for larger teams, a spike might be
accepted as one of many sprint delivery objectives. Spikes are
often introduced before the delivery of large epics or user
stories in order to secure budget, expand knowledge, and/or
produce a proof of concept. The duration and objective(s) of a
spike will be agreed between the Product Owner and Delivery
Team before the start. Unlike sprint commitments, spikes may
or may not deliver tangible, shippable, valuable functionality.
For example, the objective of a spike might be to successfully
reach a decision on a course of action. The spike is over when
the time is up, not necessarily when the objective has been
delivered.

SOFTWARE TESTING: Approaches and Technologies 67 / 92

敏捷开发

■ Scrum
 The following terminology is used in Scrum

 Tracer Bullet
 The tracer bullet is a spike with the current architecture,

current technology set, current set of best practices which
results in production quality code. It might just be a very
narrow implementation of the functionality but is not throw
away code. It is of production quality and the rest of the
iterations can build on this code. The name has military origins
as ammunition that makes the path of the weapon visible,
allowing for corrections. Often these implementations are a
'quick shot' through all layers of an application, such as
connecting a single form's input field to the back-end, to prove
the layers will connect as expected.

 Impediment
 Anything that prevents a team member from performing work

as efficiently as possible.

SOFTWARE TESTING: Approaches and Technologies 68 / 92

敏捷开发

■ Scrum
 The following terminology is used in Scrum

 Point Scale/Effort/Story Points (难度尺度)
 Relates to an abstract point system, used to discuss the

difficulty of the story, without assigning actual hours. The most
common scale used is a rounded Fibonacci sequence
(1,2,3,5,8,13,20,40,100), although some teams use linear scale
(1,2,3,4...), powers of two (1,2,4,8...), and clothes size (XS, S, M,
L, XL).

 Task
 Added to the story at the beginning of a sprint and broken

down into hours. Each task should not exceed 12 hours, but it's
common for teams to insist that a task take no more than a day
to finish.

 Definition of Done (DoD)
 The exit-criteria to determine whether a product backlog item

is complete. In many cases the DoD requires that all regression
tests should be successful.

SOFTWARE TESTING: Approaches and Technologies 69 / 92

敏捷开发

■ Scrum
 The following terminology is used in Scrum

 Velocity
 The total effort a team is capable of in a sprint. The number is

derived by evaluating the story points completed from the last
few sprint's stories/features. This is a guideline for the team
and assists them in understanding how many stories they can
do in a future sprint.

 Sashimi
 A report that something is "done". The definition of "done"

may vary from one Scrum team to another, but must be
consistent within one team.

 Planning Poker
 In the Sprint Planning Meeting, the team sits down to estimate

its effort for the stories in the backlog. The Product Owner
needs these estimates, so that he or she is empowered to
effectively prioritize items in the backlog and, as a result,
forecast releases based on the team's velocity.

SOFTWARE TESTING: Approaches and Technologies 70 / 92

敏捷开发

■ Scrum
 The following terminology is used in Scrum

 Abnormal Termination
 The Product Owner can cancel a Sprint if necessary. The

Product Owner may do so with input from the team, Scrum
Master or management. For instance, management may wish
to cancel a sprint if external circumstances negate the value of
the sprint goal. If a sprint is abnormally terminated, the next
step is to conduct a new Sprint planning meeting, where the
reason for the termination is reviewed.

 ScrumBut
 A ScrumBut (or Scrum But) is an exception to the "pure" Scrum

methodology, where a team has changed the methodology to
adapt it to their own needs.

SOFTWARE TESTING: Approaches and Technologies 71 / 92

敏捷开发

■ eXtreme Programming

 极限编程 (eXtreme Programming, XP) 是敏捷模型的一种实现过程，

由 Kent Beck 在1996年提出。

 极限编程适合：

 小团队 (2-10 programmers)

 高风险

 快速变化或不稳定的需求

 强调可测试性

 格言

 沟通 Communication

 简化 Simplicity

 反馈 Feedback

 激励 Courage

 *谦逊Modesty

Kent Beck, 1996

最简单的可能就是最有效的

SOFTWARE TESTING: Approaches and Technologies 72 / 92

敏捷开发

■ eXtreme Programming

 极限编程方法的13个核心实践

 团队协作 (Whole Team)

 规划策略 (The Planning Game)

 结对编程 (Pair programming)

 测试驱动开发 (Testing-Driven Development)

 重构 (Refactoring)

 简单设计 (Simple Design)

 代码集体所有 (Collective Code Ownership)

 持续集成 (Continuous Integration)

 客户测试 (Customer Tests)

 小规模发布 (Small Release)

 每周40小时工作制 (40-hour Week)

 编码规范 (Code Standards)

 系统隐喻 (System Metaphor)

SOFTWARE TESTING: Approaches and Technologies 73 / 92

敏捷开发

■ eXtreme Programming

 极限编程的12个实践

 小版本

 小版本发布有利于高度迭代以及给客户展现开发的进展，

客户可以针对性提出反馈。小版本也需要总体合理的规划，

如果把模块缩得太小，会影响软件的整体思路。

 规划策略

 客户以故事的形式编写客户需求。极限编程不讲求统一的

客户需求收集，客户需求不是由开发人员整理，而让客户

编写，开发人员进行分析，设定优先级别，进行技术实现。

规划策略可以进行多次，每次迭代完毕后再行修改。客户

故事是开发人员与客户沟通的焦点，也是版本设计的依据，

所以其管理必须是有效的、沟通顺畅的。

SOFTWARE TESTING: Approaches and Technologies 74 / 92

敏捷开发

■ eXtreme Programming

 极限编程的12个实践

 现场客户

 极限编程要求客户参与开发工作，客户需求就是客户负责

编写的，所以要求客户在开发现场一起工作，并为每次迭

代提供反馈。

 隐喻

 隐喻是让项目参与人员都必须对一些抽象的概念 (行业术语)

理解一致，因为业务本身的术语开发人员不熟悉，而软件

开发的术语客户不理解，因此开始要先明确双方使用的隐

喻，避免歧异。

SOFTWARE TESTING: Approaches and Technologies 75 / 92

敏捷开发

■ eXtreme Programming

 极限编程的12个实践

 简单设计

 极限编程体现跟踪客户的需求变化，既然需求是变化的，

所以对于目前的需求不必过多考虑扩展性的开发，而讲求

简单设计，实现目前需求即可。简单设计的本身也为短期

迭代提供了方便，若开发者考虑“通用”因素较多，增加

了软件的复杂度，将会加长开发的迭代周期。

SOFTWARE TESTING: Approaches and Technologies 76 / 92

敏捷开发

■ eXtreme Programming

 极限编程的12个实践

 重构

 重构是极限编程先测试后编码的必然需求，为了整体软件

可以先进行测试，对于一些软件要开发的模块先简单模拟，

让编译通过，到达测试的目的。然后再对模块具体“优

化”，所以重构包括模块代码的优化与具体代码的开发。

重构是使用了“物理学”的一个概念，是在不影响物体外

部特性的前提下，重新优化其内部的机构。这里的外部特

性就是保证测试的通过。

SOFTWARE TESTING: Approaches and Technologies 77 / 92

敏捷开发

■ eXtreme Programming

 极限编程的12个实践

 测试驱动开发

 极限编程是以测试开始的，为了可以展示客户需求的实现，

测试程序优先设计，测试是从客户实用的角度出发，客户

实际使用的软件界面着想，测试是客户需求的直接表现，

是客户对软件过程的理解。测试驱动开发，也就是客户的

需求驱动软件的开发。

 持续集成

 集成的理解就是提交软件的展现，由于采用测试驱动开发、

小版本的方式，所以不断集成 (整体测试)是与客户沟通的

依据，也是让客户提出反馈意见的参照。持续集成也是完

成阶段开发任务的标志。

SOFTWARE TESTING: Approaches and Technologies 78 / 92

敏捷开发

■ eXtreme Programming

 极限编程的12个实践

 结对编程

 这是极限编程最有争议的实践。就是两个程序员合用一台

计算机编程，一个编码，一个检查，增加专人审计是为了

提供软件编码的质量。两个人的角色经常变换，保持开发

者的工作热情。这种编程方式对培养新人或开发难度较大

的软件都有非常好的效果。

 代码共有

 在极限编程里没有严格文档管理，代码为开发团队共有，

这样有利于开发人员的流动管理，因为所有的人都熟悉所

有的编码。

SOFTWARE TESTING: Approaches and Technologies 79 / 92

敏捷开发

■ eXtreme Programming

 极限编程的12个实践

 编码规范

 编码是开发团队里每个人的工作，又没有详细的文档，代

码的可读性很重要，所以规定统一的标准和习惯是必要的。

 每周40小时工作

 极限编程认为编程是愉快的工作，不要轻易加班，小版本

的设计也是为了单位时间可以完成的工作安排。

SOFTWARE TESTING: Approaches and Technologies 80 / 92

敏捷开发

■ eXtreme Programming

 开发周期

SOFTWARE TESTING: Approaches and Technologies 81 / 92

敏捷开发

■ eXtreme Programming

 开发周期

SOFTWARE TESTING: Approaches and Technologies 82 / 92

软件生命周期过程

■ ISO/IEC 12207 软件生命周期过程

 ISO/IEC/IEEE 12207

 ISO/IEC/IEEE 12207 Systems and software engineering – Software

life cycle processes is an international standard for software

lifecycle processes. First introduced in 1995, it aims to be a primary

standard that defines all the processes required for developing and

maintaining software systems, including the outcomes and/or

activities of each process.

 ISO/IEC/IEEE 12207:2017.

 The IEEE Computer Society joined directly with the ISO in the

editing process for 2017’s version. A significant change is that it

adopts a process model identical to the ISO/IEC/IEEE

15288:2015 process model with one name change that the

15288 "System Requirements Definition" process is renamed

to the "System/Software Requirements Definition" process.

SOFTWARE TESTING: Approaches and Technologies 83 / 92

软件生命周期过程

■ ISO/IEC 12207 软件生命周期过程

 ISO/IEC/IEEE 12207:2017

 This harmonization of the two standards led to the removal of

separate software development and software reuse processes,

bringing the total number of 12207 processes from 43 down to the

30 processes defined in 15288. It also caused changes to the quality

management and quality assurance process activities and

outcomes. Additionally, the definition of "audit" and related audit

activities were updated. Annex I of ISO/IEC/IEEE 12207:2017

provides a process mapping between the 2017 version and the

previous version, including the primary process alignments

between the two versions; this is intended to enable traceability

and ease transition for users of the previous version.

SOFTWARE TESTING: Approaches and Technologies 84 / 92

软件生命周期过程

■ ISO/IEC 12207 软件生命周期过程

 Software Life Cycle Processes

 The ISO/IEC 12207 establishes a set of processes for managing the

lifecycle of software. The standard “does not prescribe (规定) a

specific software life cycle model, development methodology,

method, modelling approach, or technique.". Instead, the standard

(as well as ISO/IEC/IEEE 15288) distinguishes between a "stage"

and "process" as follows:

 stage: "period within the life cycle of an entity that relates to

the state of its description or realization". A stage is typically a

period of time and ends with a "primary decision gate".

 process: "set of interrelated or interacting activities that

transforms inputs into outputs". The same process often recurs

within different stages.

SOFTWARE TESTING: Approaches and Technologies 85 / 92

软件生命周期过程

■ ISO/IEC 12207 软件生命周期过程

 Software Life Cycle Processes

 Stages (aka phases) are not the same as processes, and this

standard only defines specific processes - it does not define any

particular stages. Instead, the standard acknowledges that software

life cycles vary, and may be divided into stages that represent major

life cycle periods and give rise to primary decision gates. No

particular set of stages is normative, but it does mention two

examples:

 The system life cycle stages from ISO/IEC TS 24748-1 could be

used (concept, development, production, utilization, support,

and retirement).

 It also notes that a common set of stages for software is

concept exploration, development, sustainment (支持), and

retirement.

SOFTWARE TESTING: Approaches and Technologies 86 / 92

软件生命周期过程

■ ISO/IEC 12207 软件生命周期过程

 Software Life Cycle Processes

 ISO/IEC/IEEE 12207:2017 divides software life cycle processes into

four main process groups

 Agreement processes

 Organizational project-enabling processes

 Technical management processes

 Technical processes.

 Under each of those four process groups are a variety of sub-

categories, including the primary activities of acquisition and

supply (agreement); configuration (technical management); and

operation, maintenance, and disposal 处置 (technical).

 The life cycle processes the standard defines are not aligned to any

specific stage in a software life cycle. Indeed, the life cycle

processes that involve planning, performance, and evaluation

"should be considered for use at every stage". In practice,

processes occur whenever they are needed within any stage.

SOFTWARE TESTING: Approaches and Technologies 87 / 92

软件生命周期过程

■ ISO/IEC 12207 软件生命周期过程

 Software Life Cycle Processes

 Agreement processes

 Here ISO/IEC/IEEE 12207:2017 includes the acquisition and

supply processes, which are activities related to establishing an

agreement between a supplier and acquirer. Acquisition covers

all the activities involved in initiating a project. The acquisition

phase can be divided into different activities and deliverables

that are completed chronologically (按顺序). During the supply

phase a project management plan is developed. This plan

contains information about the project such as different

milestones that need to be reached.

SOFTWARE TESTING: Approaches and Technologies 88 / 92

软件生命周期过程

■ ISO/IEC 12207 软件生命周期过程

 Software Life Cycle Processes

 Organizational project-enabling processes

 Detailed here are life cycle model management, infrastructure

management, portfolio management, human resource

management, quality management, and knowledge

management processes. These processes help a business or

organization enable, control, and support the system life cycle

and related projects. Life cycle mode management helps

ensure acquisition and supply efforts are supported, while

infrastructure and portfolio management supports business

and project-specific initiatives during the entire system life

cycle. The rest ensure the necessary resources and quality

controls are in place to support the business‘ project and

system endeavors (努力).

SOFTWARE TESTING: Approaches and Technologies 89 / 92

软件生命周期过程

■ ISO/IEC 12207 软件生命周期过程

 Software Life Cycle Processes

 Technical management processes

 ISO/IEC/IEEE 12207:2017 places eight different processes here:

◌ Project planning

◌ Project assessment and control

◌ Decision management

◌ Risk management

◌ Configuration management

◌ Information management

◌ Measurement

◌ Quality assurance

 These processes deal with planning, assessment, and control of

software and other projects during the life cycle, ensuring

quality along the way.

SOFTWARE TESTING: Approaches and Technologies 90 / 92

软件生命周期过程

■ ISO/IEC 12207 软件生命周期过程

 Software Life Cycle Processes

 Technical processes

 The technical processes of ISO/IEC/IEEE 12207:2017

encompass (包含) 14 different processes, some of which came

from the old software-specific processes that were phased out

from the 2008 version.

 The full list includes:

◌ Business or mission analysis

◌ Stakeholder needs and

requirements definition

◌ Systems/Software requirements

definition

◌ Architecture definition

◌ Design definition

◌ System analysis

◌ Implementation

◌ Integration

◌ Verification

◌ Transition

◌ Validation

◌ Operation

◌ Maintenance

◌ Disposal

SOFTWARE TESTING: Approaches and Technologies 91 / 92

软件生命周期过程

■ ISO/IEC 12207 软件生命周期过程

 Software Life Cycle Processes

 Technical processes

 These processes involve technical activities and personnel

(information technology, troubleshooters, software specialists,

etc.) during pre-, post- and during operation. The analysis and

definition processes early on set the stage for how software

and projects are implemented. Additional processes of

integration, verification, transition, and validation help ensure

quality and readiness. The operation and maintenance phases

occur simultaneously, with the operation phase consisting of

activities like assisting users in working with the implemented

software product, and the maintenance phase consisting of

maintenance tasks to keep the product up and running. The

disposal process describes how the system/project will be

retired and cleaned up, if necessary.

SOFTWARE TESTING: Approaches and Technologies 92 / 92

敏捷开发

■ 运行维护
 GB/Z 20985-2007 信息安全技术信息安全事件管理指南

 GB/Z 20986-2007 信息安全技术信息安全事件分类分级指南

 GB/T 20988-2007 信息安全技术信息系统灾难恢复规范

 信息安全技术网络设备安全配置指南

 信息安全技术操作系统安全配置指南

 信息安全技术防火墙安全配置指南

 信息安全技术补丁与脆弱性管理指南

■ 风险评估标准

 GB/T 20984-2007《信息安全技术信息安全风险评估规范》

 GB/T 18336《信息技术安全技术信息技术安全性评估准则》

 GB 17859－1999《计算机信息系统安全保护等级划分准则》

 GB/T 19716－2005《信息技术信息安全管理适用规则》

 GB/T22080-2008《信息技术安全技术信息安全管理体系要求》

 GB/T22081-2008《信息技术安全技术信息安全管理实用规则》/ISO27002

 GB/T 20274《信息系统安全保障评估框架》

信息安全等级保护标准体系

Thank you!

